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Abstract. We study a Kidney Exchange Problem (KEP) with altruis-
tic donors and incompatible patient-donor pairs. Kidney exchanges can
be modelled in a directed graph as circuits or as paths with limited
length. The exchanges are associated with a medical bene�t to perform
the transplants. The aim of the KEP is to determine a set of disjoint
kidney exchanges of maximal medical bene�t or maximal cardinality.
We consider a set packing formulation where the variables are associated
with the circuits and paths and we solve it via a Branch-Price-and-Cut
(BPC) algorithm. The pricing problem is formulated as an Elementary
Longest Path Problem with Length Constraints (ELPPLC). We ensure
the correctness of the algorithm by solving it by a label correcting dy-
namic programming algorithm. We strengthen the linear relaxation via
the inclusion of the subset-row inequalities which are separated via two
novel heuristics. The results reveal that the BPC algorithm is the only
exact approach from the literature able to e�ectively solve various and
di�cult benchmark instances.
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1 Problem Formulation

The KEP can be de�ned on a directed weighted graph G = (V,A) referred to
as compatibility graph. The vertex set is V = I ∪ D where I and D are the sets
of incompatible patient-donor pairs and altruistic donors, respectively. The arc
set A contains an arc (i, j) from vertex i ∈ V to patient-donor pair j ∈ I if the
kidney of the donor associated with i is compatible with the patient of pair j.
We assign a weight Wij to each arc (i, j) ∈ A representing the medical bene�t
of the transplant. Kidney exchanges are modelled as circuits of length at most
LC > 1 and as paths of length at most LP > 1 in graph G. The KEP aims
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to determine a union of pairwise vertex-disjoint exchanges circuits and paths of
maximum weight. If the weighs on the arcs are set to one, the aim of the KEP
is to maximise the number of transplants.

Let E = EC ∪ EP be the set of the exchanges in graph G, where EC (EP )
is the set of the exchange circuits (paths) in graph G. The weight of e ∈ E is
We =

∑
(i,j)∈e Wij . Let a

e
i be a binary parameter equal to one if vertex i ∈ V is

involved in e ∈ E and zero otherwise. For each e ∈ E , we de�ne a binary variable
λe taking value one if e is part of the solution and zero otherwise.

The Set Packing formulation [SP] for the KEP reads as follows:

[SP] max
∑
e∈E

Weλe (1)

s.t.
∑
e∈E

aeiλe ≤ 1 ∀i ∈ V (2)

λe ∈ {0, 1} ∀e ∈ E . (3)

Objective function (1) maximises the weights of the exchanges. Set Packing
Constraints (2) ensure that each vertex is involved in at most one exchange
circuit or path. Constraints (3) de�ne variables λe as binary.

2 A Branch-Price-and-Cut Algorithm

Formulation [SP] is de�ned over exponentially-many variables λe, e ∈ E . We
solve [SP] by means of a Branch-Price-and-Cut (BPC) algorithm [2].

Let πi ≥ 0, i ∈ V be the dual prices associated with Constraints (2). The
reduced cost of a λe variable is W̄e = We −

∑
i∈V aeiπi. The pricing problem is

[PP] max{W̄e : e ∈ E} and looks for the most positive reduced cost variables λe.
It can be decomposed in |I|+ 1 independent subproblems: [PP-C](i) max{W̄e :
e ∈ EC

i }, i ∈ I, to price out the variables associated with circuits and [PP-P] max{W̄e :
e ∈ EP } to price out variables associated with paths. These problems can be for-
mulated as an Elementary Longest Path Problem with Length Constraint (ELP-
PLC) which is NP-hard in the strong sense. We exploit the following results
from the literature: (i) thanks to the length constraints, problems [PP-C](i) are
solvable in polynomial-time by a variant of the Bellman-Ford algorithm (see,
e.g., [5]); (ii) the authors in [1] identify conditions when also problem [PP-P] can
be solved in polynomial-time.

The BPC algorithm incorporates the following elements of novelty: (i) when
the conditions to solve [PP-P] do not occur, the ELPPLC needs to be solved
to ensure the correctness of the algorithm. In [1], the ELPPLC is solved via an
integer program with exponentially-many constraints. In the BPC algorithm, we
solve the ELPPLC via a more e�cient label correcting dynamic programming
algorithm [4]. (ii) In the BPC algorithm, we strengthen the linear relaxation with
the inclusion of non-robust valid inequalities, namely, the subset row inequalities.
Usually, in the literature, they are separated by enumeration. However, the size
of the KEP instances prevents to do so in reasonable time. Hence, we develop two
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fast heuristics to separate them which are based on the separation of the clique

and odd-hole inequalities, respectively. In addition, we prove that each violated
odd-hole inequality leads to a subset-row inequality with the same violation.

3 Computational Experiments

We test the BPC algorithm on three sets of instances from the literature: PrefLib
dataset, set of instances in [5] and [3].

Table 1. Results on the three sets of instances.

Instances BPC results
set LC LP obj. |I| # #opt. avg.t[s] avg.gap[%]

PrefLib 3, 4
3, 4,

#TR
16 to 512 1360 1360 1.4 -

5, 6 1024, 2048 480 480 174.7 -

[5] 3
3, 6,

MB
50, 100, 250 135 135 7.1 -

12 500, 750, 1000 135 56 381.2 0.4

[3]
3, 4, 5,

0
#TR 50 to 1000 840 840 2.5 -

6, 7, 8 MB 50 to 400 480 384 89.6 0.4

The results show that the instances where the objective is the maximisation of
the number of transplants (#TR) are easy, no matter the size of the compatibility
graphs: all are solved to optimality. Conversely, not all the instances where the
objective is the maximisation of the medical bene�t (MB) are solved, however,
the ones not solved are left with an optimality gap of 0.4%, on average. Against
the literature, we provide comparable results with [1] on the PrefLib dataset.
We outperform those in [5] and [3] on their respective instance sets.
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