
ar
X

iv
:1

70
5.

00
28

9v
1 

 [
st

at
.M

E
] 

 3
0 

A
pr

 2
01

7

Aggregation of Dependent Risks in Mixtures

of Exponential Distributions and Extensions
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Abstract

The distribution of the sum of dependent risks is a crucial aspect in
actuarial sciences, risk management and in many branches of applied
probability. In this paper, we obtain analytic expressions for the prob-
ability density function (pdf) and the cumulative distribution function
(cdf) of aggregated risks, modeled according to a mixture of exponen-
tial distributions. We first review the properties of the multivariate
mixture of exponential distributions, to then obtain the analytical for-
mulation for the pdf and the cdf for the aggregated distribution. We
study in detail some specific families with Pareto (Sarabia et al, 2016),
Gamma, Weibull and inverse Gaussian mixture of exponentials (Whit-
more and Lee, 1991) claims. We also discuss briefly the computation
of risk measures, formulas for the ruin probability (Albrecher et al.,
2011) and the collective risk model. An extension of the basic model
based on mixtures of gamma distributions is proposed, which is one
of the suggested directions for future research.
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1 Introduction

The distribution of the sum of risks is a key aspect in actuarial sciences,
risk management and in many branches of applied probability. Albeit it can
be easily obtained for independent risks, this assumption is in most cases
too restrictive, thus being crucial to specify more general models that allow
for dependence between different risks. In the recent statistical and actuarial
literature, several results about risk aggregation under dependence have been
obtained, which deploy different copula structures (see, e.g., Arbenz et al.
(2012), Coqueret (2014), Gijbels and Herrmann (2014)).

Cossette et al. (2013) consider risk aggregation and capital allocation
problems for a portfolio of dependent risks, modeling the multivariate distri-
bution with the Farlie-Gumbel-Morgenstern (FGM) copula and mixed Erlang
distribution marginals. Hashorva and Ratovomirija (2015) considers and ex-
tension of previous model introducing the Sarmanov distribution to model the
dependence structure, also demonstrating that the aggregated risk belongs to
the class of Erlang mixtures. Also using the Sarmanov’s distribution to de-
fine the dependence structure, Vernic (2016) presents some formulas for the
density of the sum of random variables, with a particular focus on exponen-
tially distributed marginals. The multivariate Pareto distributions seems to
be an outstanding candidate to model dependent risk. Sarabia et al. (2016)
have studied aggregation in multivariate dependent Pareto distributions, also
providing closed formulas for the individual risk model, and for the collective
risk model assuming Poisson, negative binomial and logarithmic as primary
distributions. Bølviken and Guillen (2017) have also considered the Pareto
copula, using in this case log-normal marginals, to study risk aggregation,
improving the accuracy of the model by updating the skweness recursively.
A flexible approach has been recently proposed by Côté and Genest (2015),
which consist of a consists of a tree structure of bivariate copulas, which are
assumed to be conditionally independence.

In this paper, we propose to model the aggregated risk by a multivariate
mixture of exponential distributions. The model proposed by Lindley and
Singpurwalla (1986) corresponds to gamma mixtures of exponential distribu-
tions. Extensions of this model were provided by Nayak (1987) and Roy and
Mukherjee (1988) among others. This model has been widely used in actu-
arial science, reliability studies and quantitative risk analysis. For instance,
it was considered by Albrecher et al. (2011), providing explicit formulas
for the ruin probability. However, the question of the aggregation of risks
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in this model remains open. A particular case was considered in Sarabia
et al. (2016), where the mixing distribution is of gamma type. The general
multivariate mixture of exponential distributions can be specified for any pos-
itive mixing distribution described in terms of Laplace transform. Using this
transform, we obtain analytic expressions for the probability density function
(pdf) and the cumulative distribution function (cdf) of the aggregated risks.

The rest of the paper is organized as follows. In Section 2, we review
the properties of the multivariate mixture of exponentials including a char-
acterization theorem (in terms of the copula generator and the marginal
distributions), dependence conditions (total positivity of order two in pairs
and associated random variables), dependence measures, moments, copula
(which belong to the Archimedean family) and other relevant features. In
Section 3, we obtain the analytical formulation for the pdf and the cdf of the
aggregated distribution. Moroever, we include expressions for the survival
function, the moments and the value at risk (VaR). Different models are
studied in Section 4, with a primary focus on claims of Pareto type (Sarabia
et al., 2016), Gamma, Weibull with shape parameter 1/2, general Weibull
and inverse Gaussian mixture of exponentials (Whitmore and Lee, 1991).
In particular, the models with Pareto and Weibull claims have Clayton and
Gumbel copulas, respectively. As regards the other multivariate models,
their dependence structure is characterized by new families of copulas, which
are obtained. For all these models, we obtain specific expressions for the
aggregated distribution, and we study some of their main properties. We
also discuss briefly the computation of several risk measures including VaR,
tail value at risk and other tail measures, formulas for the ruin probability
(Albrecher et al., 2011) and the collective risk model. In Section 5, we study
an extension of the basic multivariate model, given by a multivariate mixture
of classical gamma distributions. A specific model is considered, based on
mixtures of gamma and gamma product-ratio claims (Sibuya, 1979). Finally,
in Section 6, we include some conclusions and ideas about future research.

2 The model

Let Θ be a positive random variable with cdf FΘ(·) and Laplace-Stieltjes
transform (hereinafter referred to as Laplace transform) LΘ(·), that is LΘ(s) =
E[exp(−sΘ)] =

∫∞
0
e−szdFΘ(z). A distribution with support on (0,∞) is

identified by its Laplace transform. We consider the classical compound
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Poisson risk with exponential claims sizes (Asmussen and Albrecher (2010),
Klugman et al. (2008)). Hence, we have a random vector (X1, . . . , Xn), which
comprises independent exponentially distributed random variables condition-
ally on Θ = θ, Xi, with hazard rate θ given by the following stochastic
representation,

Xi|Θ = θ ∼ Exp(θ), iid, i = 1, . . . , n (1)

Θ ∼ FΘ(·), (2)

where Exp(θ) represents an exponential distribution with mean 1
θ
. The joint

conditional survival function is given by,

Pr(X1 > x1, . . . , Xn > xn|Θ = θ) =

n
∏

i=1

exp(−θxi), xi > 0, i = 1, 2, . . . , n.

The random variable Θ represents a common random hazard rate shared
by all the components or a frailty random variable in a survival context.
It should be worth noting that because the components of the vector are
conditionally independent and identically distributed they are exchangeable.
The following characterization Theorem was provided by Albrecher et al.
(2011).

Theorem 1 The model (X1, . . . , Xn) defined in (1)-(2) can be characterized
by having marginal claims Xi, i = 1, 2, . . . , n that are completely monotone
with a dependence structure due to an Archimedean copula with generator
φ(u) = LΘ(u)

−1 for each subset (Xj1, . . . , Xjn) for j1, . . . , jn pairwise differ-
ent, where LΘ(u) is the Laplace transform of FΘ.

The proof of this result can be found in Oakes (1989) and Albrecher et
al. (2011).

The unconditional distribution of joint survival function is given by,

Pr(X1 > x1, . . . , Xn > xn) =

∫ ∞

0

e−θ(x1+···+xn)dFΘ(θ)

= LΘ(x1 + · · ·+ xn),

for each n and x1, . . . , xn > 0. On the other hand, the survival joint function
C̄ can be written as,

Pr(X1 > x1, . . . , Xn > xn) = C̄(F̄X(x1), . . . , F̄X(xn)),
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where F̄X(xi) = Pr(Xi > x), is the marginal survival function, and note that
all the marginal distributions are identically distributed. Now, if the survival
copula is Archimedean with function generator φ, then,

C̄(F̄X(x1), . . . , F̄X(xn)) = φ−1
(

φ(F̄X1
(x1) + · · ·+ φ(F̄Xn

(xn)
)

, (3)

because the survival function of the marginal distributions are,

F̄X(xi) =

∫ ∞

0

e−θxidFΘ(θ) = LΘ(xi), i = 1, 2, . . . , n, (4)

and then LΘ(t) = φ−1(t), where φ(·) is the copula’s generator. The inverse
of a Laplace transform of a cdf, φ, is continuous strictly decreasing function
from [0, 1] to [0,∞] with φ(0) = ∞ and φ(1) = 0 and φ−1 is completely
monotone. The Archimedean copula is, therefore, well defined for all n and
from (4) the marginal distributions are completely monotone (Nelsen, 1999,
Theorem, 4.6.2).

An alternative writing of the model (1)-(2) is the following stochastic
representation in terms of quotients of random variables,

(X1, . . . , Xn)
⊤ =

(

Y1
Θ
, . . . ,

Yn
Θ

)⊤
, (5)

where Yi, i = 1, 2, . . . , n are iid exponential distributions with mean 1 and Θ
is a positive random variable independent of the Yi. This representation is
especially useful for the simulation of samples of (X1, . . . , Xn)

⊤, and hence
to compute the different features of Sn =

∑n
i=1Xi in an approximate way.

2.1 Dependence Conditions

The dependence conditions of this model have been studied by Lee and Gross
(1989) and Whitmore and Lee (1991). The multivariate distribution gener-
ated by the mixture of exponentials is dependent by total positivity of order 2
(TP2) in each pair of arguments, being the remaining arguments fixed (Bar-
low and Proschan, 1981). We now prove the concept of associated random
variables proposed by Esary et al. (1967) in a simple way using (5).

Definition 1 Random variables X1, . . . , Xk are said to be associated if

cov(φ(X1, . . . , Xk), ψ(X1, . . . , Xk)) ≥ 0

for all increasing functions (φ, ψ) for which the covariance exists.
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The following proposition allows to check previous condition (Esary et
al., 1967).

Proposition 1 If,

Xi = φi(Y1, . . . , Yn), i = 1, 2, . . . , k

where φi are increasing functions and Y1, . . . , Yn are independent, then X1, . . . , Xk

are associated.

We have the following result.

Proposition 2 The random variables (X1, . . . , Xn)
⊤ defined in (1)-(2) are

associated.

Proof: The proof is direct taking into account Proposition 1 and the
stochastic representation (5).

2.2 Joint moments and dependence measures

The joint moments of (X1, . . . , Xn) can be obtained using the following ex-
pression (Whitmore and Lee, 1991),

E(Xr1
1 · · ·Xrn

n ) = E (E(Xr1
1 · · ·Xrn

n |Θ)) ,

=

n
∏

j=1

Γ(rj + 1)E
(

Θ−(r1+···+rn)
)

. (6)

On the other hand, taking into account the Archimedean character of
(X1, . . . , Xn) we can obtain easily some correlations coefficients. Using (6),
Whitmore and Lee (1991) have obtained a simple expression for the linear
correlation coefficient between pairs (Xi, Xj). Setting W = Θ−1, we have

ρij = ρ(Xi, Xj) =
E(W 2)− E2(W )

2E(W 2)−E2(W )
, (7)

and E(W 2) ≥ E2(W ), then ρij ≥ 0, which is a direct consequence of being
TP2 and associated random variables.

The Kendall’s tau, τij , for each bivariate pair of variable can be obtained

easily from the generator function of the copula φ(·). If φ(0)
φ′(0)

= 0 we have

(Genest and MacKay, 1986),

τij = τ(Xi, Xj) = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt. (8)
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3 The distribution of the aggregated risk

In this section we obtain the probability density function and the survival
function of the aggregated risk Sn and closed expressions for the raw mo-
ments.

3.1 Basic result

Theorem 2 Let Θ be a positive random variable with cdf FΘ(·) and Laplace
transform LΘ(·). Assume that, given Θ = θ, the random variables X1, . . . , Xn

are conditionally independent and distributed as exponential Exp(θ), ac-
cording to model (1)-(2). Then, the pdf of the aggregated random variable
Sn = X1 + · · ·+Xn is given by,

fSn
(x) =

xn−1

Γ(n)

{

(−1)n
dn

dxn
LΘ(x)

}

, x ≥ 0 (9)

and fSn
(x) = 0 if x < 0.

Proof: The unconditional distribution of Sn is,

fSn
(x) =

∫ ∞

0

fSn|Θ(x|θ)dFΘ(θ). (10)

Since the conditional distribution Sn|Θ ∼ Ga(n, θ) is a classical gamma dis-
tribution we have,

fSn
(x) =

∫ ∞

0

θnxn−1e−θx

Γ(n)
dFΘ(θ)

=
xn−1

Γ(n)

∫ ∞

0

θne−θxdFΘ(θ)

=
xn−1

Γ(n)

{

(−1)n
dn

dxn
LΘ(x)

}

,

and we have the result.

Theorem 2 provides a new and simple way to obtain the probability den-
sity function of the aggregated risk in the case of dependence, using the
successive derivatives of the Laplace transform. Note that fSn

(x) is well de-
fined since (−1)kdkLΘ(x)/dx

k ≥ 0, for all k ≥ 1, because LΘ(x) is a Laplace
transform. Hence, we have three ways to compute the distribution of the
aggregated risk Sn:
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1. To use the stochastic representation (5), and to obtain the pdf of Sn =∑n
j=1

Yj

Θ
, as the quotient of two independent random variables.

2. To compute directly the integral (10).

3. To use equation (9), computing the nth derivative of the Laplace trans-
form.

3.2 Survival function

The survival function of the distribution of Sn can be written in a simple
way, using the cdf of a gamma distribution, where the shape parameter is an
integer number. If x > 0, we have,

Pr(Sn > x) =

∫ ∞

0

Pr(Sn > x|Θ = θ)dFΘ(θ)

=

∫ ∞

0

n−1
∑

k=1

(θx)ke−θx

k!
dFΘ(θ)

=
n−1
∑

k=1

xk

k!

{

(−1)k
dk

dxk
LΘ(x)

}

.

Then, the survival function can be computed using the first n − 1 first
derivatives of the Laplace function.

3.3 Moments

The moments of Sn can be obtained easily in terms of the negative moments
of Θ. We have,

E(Sr
n) =

Γ(n+ r)

Γ(n)
E(Θ−r),

if E(Θ−r) < ∞. The mean and variance of Sn can be computed using the
formulas,

E(Sn) = nE(Θ−1), (11)

var(Sn) = nE(Θ−2) + n2var(Θ−1), (12)

assuming E(Θ−2) <∞.
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3.4 Value at risk

Value at risk at level α, with 0 < α < 1 of a random variable X with cdf
F (x) is defined as,

VaR[X ;α] = inf{x ∈ R, F (x) ≥ α}.
In our case, the VaR of the aggregated distribution Sn is the only solution
in x of the equation,

n−1
∑

k=1

xk

k!

{

(−1)k
dk

dxk
LΘ(x)

}

= 1− α.

This equation can be solved numerically.

4 Models

In this section, we will study five specific mixtures of exponential distribu-
tions. We will consider dependent models with different copulas and claims
of the type Pareto, classical gamma, Weibull with shape parameter α = 1

2
,

general Weibull and inverse Gaussian mixture distributions.

4.1 Pareto Claims and Clayton Copula Dependence

Assume that the random variable Θ ∼ Ga(α, β) is distributed as a gamma
distribution with pdf,

fΘ(θ) =
βαθα−1e−βθ

Γ(α)
, θ > 0

and Laplace transform LΘ(t) = (1 + t/β)−α. The generator function of the
Archimedean copula is φ(t) = t−1/α − 1. The marginal distribution Xi,
i = 1, 2, . . . , n are,

F̄Xi
(x) = LΘ(x) =

1

(1 + x/β)α
, x ≥ 0, i = 1, 2, . . . , n, (13)

which corresponds to a Pareto distribution Pa(α, β). The joint survival
function of (X1, . . . , Xn) is,

Pr(X1 > x1, . . . , Xn > xn) =
1

(

1 +
n
∑

i=1

xi/β

)α , xi ≥ 0, i = 1, 2, . . . , n,
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which is the joint survival function of a Pareto II distribution proposed by
Arnold (1983, 2015). Using (3), the survival copula associated is,

C̄(u1, . . . , un) = (u
−1/α
1 + · · ·+ u−1/α

n − n+ 1)−α, (14)

which is a Clayton copula. The dependence increases with α, being the
independence case obtained with α→ 0 and the Fréchet upper bound when
α→ ∞. The distribution of the sum is given in the following Theorem.

Theorem 3 Let consider the dependent risk model (X1, . . . , Xn), with Pareto
marginals with shape parameter α, scale parameter β and Clayton survival
copula defined in (14). Then, the pdf of the aggregated risk Sn is given by,

fSn
(x) =

xn−1

βnB(n, α)(1 + x/β)n+α
, x ≥ 0, (15)

and fSn
(x) = 0 is x < 0.

Proof: Since the Laplace transform of Θ is given by (13), using (9) we
have,

fSn
(x) =

xn−1

Γ(n)

{

(−1)n
dn

dxn
1

(1 + x/β)α

}

,

and then,

L
(n)
Θ (x) =

(−1)nα(α− 1) · · · (α− n + 1)

βn(1 + x/β)α+n

=
(−1)nΓ(α + n)

βnΓ(α)(1 + x/β)α+n
,

and we obtain the result.
Deploying on different methodologies, this formula was obtained by Guillén

et al. (2013), Dacarogna et al. (2015) and Sarabia et al. (2016). As the pdf
(15) is a second kind beta distribution Sn ∼ B2(α, n, β) (see McDonald,
1984). The raw moments are,

E(Sr
n) =

βrΓ(n + r)Γ(α− r)

Γ(n+ α)
, if α > r.

10



4.2 Dependent Gamma Claims

Our next model is based on gamma claims. The gamma distribution with
shape parameter α ∈ (0, 1] is completely monotone and then, it can be
accommodated to the general model introduced in Section 2. We have the
following theorem (Gleser, (1989) and Albrecher and Kortschak (2009)).

Theorem 4 Let X ∼ Ga(α, λ) be a gamma distribution with scale parameter
λ and shape parameter α ∈ (0, 1] and pdf,

fX(x) =
λαxα−1e−λx

Γ(α)
, x > 0.

Then,

fX(x) =

∫ ∞

0

θe−θxfΘ(θ)dθ,

where

fΘ(θ) =
(θ − λ)−αλα

θΓ(1− α)Γ(α)
, λ ≤ θ <∞, (16)

and fΘ(θ) = 0 otherwise.

The following lemma provides the Laplace transform of the mixing density
(16).

Lemma 1 The Laplace transform of the random variable Θ with pdf (16) is,

LΘ(s) =
Γ(α, λs)

Γ(α)
, s ≥ 0, (17)

where Γ(s, x) =
∫∞
x
ts−1e−tdt denotes the upper incomplete gamma function.

Proof: The proof is direct using the pdf defined in (16).
Using previous lemma, we get the generator function of the corresponding

copula, which is given by,

φ(t) = QGα
(1− t), (18)

where QGα
(u) represents the quantile function of a gamma distribution with

mean α and unit scale parameter. Using Equation (17), the joint survival
function is,

Pr(X1 > x1, . . . , Xn > xn) =
Γ
(

α, λ
∑n

j=1 xj

)

Γ(α)
,

11



if x1, . . . , xn ≥ 0, with marginal survival functions,

Pr(Xi > x) =
Γ (α, λx)

Γ(α)
, x ≥ 0, i = 1, 2, . . . , n.

The associated copula is given in the following Theorem.

Theorem 5 The survival copula associated to the Exponential-Gamma de-
pendent model is given by,

C̄(u1, . . . , un) = 1− FGα
(QGα

(1− u1) + · · ·+QGα
(1− u2)) , (19)

where FGα
(·) and QGα

(·) represent the cdf and the quantile function, respec-
tively of the gamma distribution with shape parameter α.

Proof: The proof is direct by considering equation (3) and the generator
function (18).

Theorem 6 Let consider the dependent risk model (X1, . . . , Xn), with gamma
marginals with shape parameter α ∈ (0, 1), scale parameter λ and survival
copula defined in (19). Then, the pdf of the aggregated risk Sn is given by,

fSn
(x) =

n−1
∑

k=0

(−1)k(α− 1)k
Γ(α)k!(n− k − 1)!

λ(λx)n+α−k−2e−λx, x ≥ 0 (20)

with n = 2, 3, . . . , fSn
(x) = 0 if x < 0 and (a)n = a(a− 1) · · · (a− n + 1) is

the Pochhammer symbol. Previous pdf can be written as a finite mixture of
Gamma distributions Ga(αk, λ),

fSn
(x) =

n−1
∑

k=0

wkfGa(αk ,λ)(x),

with shape parameters,

αk = n+ α− k − 1, k = 0, 1, . . . , n− 1, (21)

and weights (positive and negatives)

wk =
(−1)k(α− 1)kΓ(n+ α− k − 1)

Γ(α)k!(n− k − 1)!
, k = 0, 1, . . . , n− 1. (22)
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Proof: Since L′
Θ(x) = − λα

Γ(α)
xα−1e−λx and using the Leibniz’s rule (see

Appendix, equation (42)) we have,

dn

dxn
LΘ(x) =

dn−1

dxn−1
{L′

Θ(x)}

= − λα

Γ(α)

dn−1

dxn−1

{

e−λxxα−1
}

= − λα

Γ(α)

n−1
∑

k=0

(

n− 1

k

)

(−1)n−k−1λn−k−1e−λx(α− 1)kx
α−k−1,

and using (9) we have,

fSn
(x) =

n−1
∑

k=0

(−1)2n−k(α− 1)k
Γ(α)Γ(n)

(

n− 1

k

)

λn+α−k−1xn+α−k−2e−λx,

which corresponds to formula (20).

The moments of (20) can be obtained easily taking into account that it
is a finite mixture of Gamma distributions. We have that,

E(Sr
n) =

n−1
∑

k=0

wk
Γ(αk + r)

λrΓ(αk)
,

where r > 0, αk are defined in (21) and wk in (22).

4.3 Weibull 1
2
Claims with Gumbel Copula Dependence

This model corresponds to Weibull Claims with Gumbel copula dependence
(Albrecher et al., 2011). We consider for Θ a 1

2
-stable distribution, also called

Lévy distribution, with probability density function (see Jewell, 1982),

fΘ(θ) =
λ

2
√
πθ3

e−λ2/4θ, θ ≥ 0, (23)

and Laplace transform LΘ(s) = e−λ
√
s, which corresponds to the function

generator of the Archimedean copula φ(s) = (− log(s))2, thus being a spe-
cial case of the Gumbel Copula. For this model, the corresponding survival
marginal function,

F̄Xi
(x) =

∫ ∞

0

e−θxfΘ(θ)dθ = exp(−λ
√
x), x ≥ 0.
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The joint survival function is,

Pr(X1 > x1, . . . , Xn > xn) = exp
(

−λ
√
x1 + · · ·+ xn

)

, x1 ≥ 0, . . . , xn ≥ 0.

The following Theorem states a simpler expression to the formulation pro-
vided by Dacarongna et al. (2015). To obtain this result, we use of the
probability density function of the generalized inverse Gaussian (GIG) dis-
tribution introduced by Good (1953), with pdf,

f(x; a, b, p) =
(a/b)p/2

2Kp(
√
ab)

xp−1 exp

{

−1

2

(

ax+
b

x

)}

, x ≥ 0, (24)

where −∞ < p < ∞, (a, b) ∈ Θp, where Θp = {(a, b) : a > 0, b ≥ 0} if
p > 0, {(a, b) : a > 0, b > 0} if p = 0 and {(a, b) : a ≥ 0, b > 0} if p < 0.
Here, Kν(z) denotes the modified Bessel function of the third kind with
index ν and argument z (Watson, 1995). Special sub-models are the gamma
distribution (b = 0, p > 0), the reciprocal gamma distribution (a = 0, p < 0),
the inverse Gaussian distribution (p = −1/2) and the hyperbola distribution
(p = 0).

Theorem 7 Let consider the dependent risk model (X1, . . . , Xn), with marginal
Weibull distributions with shape parameter α = 1

2
and scale parameter c > 0

and Gumbel survival copula with dependent parameter θ = 1/α = 2. Then,
the pdf of the aggregated risk Sn is given by,

fSn
(x) =

λ

22n−1Γ(n)

n−1
∑

k=0

(2(n− 1)− k)!

(n− k − 1)!k!
(2λ)kx(k−1)/2e−λ

√
x, x ≥ 0, (25)

and fSn
(x) = 0 if x < 0.

Proof: To prove this result, we use the second method described in Section
3.1. Using (10)and (23) we have,

fSn
(x) =

xn−1

Γ(n)

∫ ∞

0

tne−xtfΘ(t)dt

=
λxn−1

2
√
πΓ(n)

∫ ∞

0

tn−3/2e−xt−λ2/4tdt

=
λxn−1

2
√
πΓ(n)

2Kn−1/2(λ
√
x)

(4x/λ2)(1/2)(n−1/2)

=
λn+1/2

2n−1/2
√
πΓ(n)

xn/2−3/4Kn−1/2(λ
√
x),
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where we have s GIG distribution (24) with parameters a = 2t, b = λ2/2 and
p = n − 1/2. Now, we use the following result by Gradshteyn and Ryzkiz
(1980),

Kn+ 1

2

(x) =

√
π

(2x)n+1/2
e−x

n
∑

k=0

(2n− k)!

(n− k)!k!
(2x)k,

and after some computation we obtain (25).
Formula (25) can also be written in terms of the partial Bell polynomials

(see Appendix). We write LΘ(x) = f(g(x)) = e−λ
√
x, with f(x) = e−λx,

g(x) =
√
x. Since f (n)(x) = (−1)nλne−λx and

g(n)(x) = anx
1/2−n,

where

an =
(−1)n−1(2n− 2)!

22n−1(n− 1)!
, n = 1, 2, . . . (26)

we have,

fSn
(x) =

xn−1

Γ(n)

n
∑

k=1

(−1)n−kλke−λ
√
xBn,k

{

ajx
1/2−j , 1 ≤ j ≤ n− k + 1

}

,

with x ≥ 0, being Bn,k(x1, . . . , xn−k+1) are the partial Bell polynomials de-
fined in the Appendix.

Note that the density (25) is a finite mixture of densities of the form
f(x) ∝ xα−1e−λ

√
x. We introduce the following definition.

Definition 2 A random variable X is said to have a square gamma distri-
bution if its pdf is of the form,

f(x) =
λ2αxα−1e−λ

√
x

2Γ(2α)
, x ≥ 0, (27)

and f(x) = 0 is x < 0, with α, λ > 0.

A random variable with pdf (27) will be represented as X ∼ SGa(α, λ). Note
that

√
X ∼ Ga(2α, r), that is, the square root of X is a classical gamma

distribution. The raw moments are E(Xr) = Γ(2(α+r))
λ2rΓ(2α)

, with r > 0. The

mean and variance of
√
X are E(

√
X) = 2α

λ
and var(

√
X) = 2α

λ2 respectively.
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Using Definition 2, the density of Sn can be written as,

fSn
(x) =

n−1
∑

k=0

(2n− k − 2)!

(n− k − 1)!Γ(n)22n−k−2

λk+1x(k+1)/2−1e−λ
√
x

2Γ(k + 1)
,

which is a finite mixture of square gamma distributions with components
Xk ∼ SGa(k+1

2
, λ), k = 1, 2, . . . , n,

fSn
(x) =

n−1
∑

k=0

wkfSGa((k+1)/2,λ)(x),

and weights,

wk =
(2n− k − 2)!

(n− k − 1)!Γ(n)22n−k−2
, k = 0, 1, . . . , n− 1.

The moments of the sum Sn can be obtained in a simple form as,

E(Sr
n) =

n−1
∑

k=0

wkE (Xr
k) =

n−1
∑

k=0

wk
Γ(k + 1 + 2r)

λk+1Γ(k + 1)
.

4.4 General Weibull Claims with Gumbel Copula De-

pendence

We introduce in this section a new model for the aggregated risks, which
is an extension of the previous one. Let consider a positive stable random
variable with pdf (see Feller, 1971),

fΘ(x) = − 1

πx

∞
∑

k=1

Γ(kα + 1)

k!
(−x−α)k sin(αkπ),

and Laplace transform,

LΘ(s) = exp(−sα), s ≥ 0, (28)

and α ∈ (0, 1]. Using (28), the joint survival function is,

Pr(X1 > x1, . . . , Xn > xn) = exp{−(x1 + · · ·+ xn)
α},
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with marginal distributions,

F̄Xi
(x) = exp{−xα}, x ≥ 0, i = 1, 2, . . . , n,

which are Weibull distributions with shape parameter α ∈ (0, 1]. Since the
Laplace transform of Θ is (28), the generator of the Archimedean copula is
φ(t) = L−1

Θ (t) = (− log t)1/α and the survival copula is,

C̄α(u1, . . . , un) = exp

{

−
[

n
∑

k=1

(− log uk)
1/α

]α}

, (29)

which corresponds to the Gumbel copula (the family B6 in the Joe’s (1997)
notation). Note that (29) includes the CU upper bound for α → 0 and the
CI bound for α = 1.
For the distribution of the sum, we have the following Theorem.

Theorem 8 Let consider the model (1)-(2), where the marginal claims are
Weibull(α) with 0 < α ≤ 1 and the copula dependence is Gumbel. Then, the
distribution of Sn is,

fSn
(x;α) =

xn−1

Γ(n)

n
∑

k=1

(−1)n+ke−xα

Bn,k

(

(α)1x
α−1, . . . , (α)n−k+1x

α−(n−k+1)
)

,

(30)
where α ∈ (0, 1], Bn,k(x1, . . . , xn−k+1) are the partial Bell polynomials and
(α)n is the Pochhammer symbol.

Proof: We write LΘ(x) = f(g(x)) = e−tα , where f(x) = e−x and g(x) = xα.
Then,

f (n)(x) = (−1)ne−x,

and
g(n)(x) = α(α− 1) · · · (α− n+ 1)xα−n = (α)nx

α−n,

so, using the Faà di Bruno formula (43) and Theorem 2, we get the result.

The pdf (30) is a finite mixture of generalized gamma distributionsGG(α, η),
whose pdf is (see McDonald, 1984),

f(x;α, η) =
αxαη−1e−xα

Γ(α)
, x ≥ 0.
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For n = 2, formula (30) becomes in,

fS2
(x;α) = (1− α)αxα−1e−xα

+ α2x2α−1e−xα

, x ≥ 0,

which is a finite mixture of two generalized gamma GG(α, 1) and GG(α, 2),
with weights 1− α and α respectively. For n = 3 we have,

fS3
(x;α) =

α(1− α)(2− α)

2
xα−1e−xα

+
3α2(1− α)

2
x2α−1e−xα

+
α3

2
x3α−1e−xα

,

with x ≥ 0, which is again a mixture of the three generalized gamma distri-
butions GG(α, j), with j = 1, 2, 3 with weights (1−α)(2−α)

2
, 3α(1−α)

2
and α2.

The following Lemma provides the Kendall’s tau coefficient.

Lemma 2 The tau Kendall’s tau coefficient between pairs of random vari-
ables is,

τij(Xi, Xj) = 1− α.

Proof: Since φ(0)
φ′(0)

= 0, using Equation (8), we obtain the result.

4.5 Inverse Gaussian Mixtures of exponential Claims

If Θ ∼ IG(λ, µ) has an inverse Gaussian distribution with parameters µ > 0
and λ > 0 and pdf,

fΘ(x) =

√

λ

2π
x−3/2 exp

(

−λ(x− µ)2

2µ2x

)

, x > 0,

the corresponding mixing distribution for the marginal claim size Xj is,

Pr(Xj > x) =

∫ ∞

0

e−θxfΘ(θ)dθ = exp

{

−λ
µ

(
√

1 +
2µ2x

λ
− 1

)}

, x ≥ 0,

(31)
for j = 1, 2, . . . , n and joint survival function

Pr(X1 > x1, . . . , Xn > xn) = exp







−λ
µ





√

√

√

√1 +
2µ2

λ

n
∑

j=1

xj − 1











, (32)
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if x1, . . . , xn ≥ 0. This model (with a different parameterization) was intro-
duced by Whitmore (1988) and extended to the multivariate case by Whit-
more and Lee (1991). Since the generator is,

φ(t) =
λ

2µ2

{

(

1− µ

λ
log t

)2

− 1

}

,

the survival copula associated is,

C̄(u1, . . . , un) = exp







−λ
µ





(

n
∑

j=1

(

1− µ

λ
log uj

)2

− n+ 1

)1/2

− 1











,

(33)
with 0 ≤ uj ≤ 1, j = 1, 2, . . . , n.

To obtaine the pdf of the sum, we define

a(x) =

√

1 +
2µ2x

λ
− 1,

and

b(x) =
λ

µ
a(x),

We have the following Theorem.

Theorem 9 Let consider the model (1)-(2), where the marginal claims are
defined in (31) and the copula dependence is (33). Then, the distribution of
Sn is,

fSn
(x) =

xn−1

Γ(n)

n
∑

k=1

(−1)n+k

(

λ

µ

)k

e−b(x)un,k(x),

if x ≥ 0, fSn
(x) = 0 if x < 0 where

un,k(x) = Bn,k

{

ajb
j(1 + bx)1/2−j , 1 ≤ j ≤ n− k + 1

}

,

with b = 2µ2

λ
, Bn,k(x1, . . . , xn−k+1) are the partial Bell polynomials and an are

defined in (26).

Proof: We write LΘ(t) = f(g(t)), where f(t) = e−
λ
µ
t and g(x) = (1 +

b(x))1/2 − 1. We have f (n)(t) = (−1)n(λ
µ
)ne−

λ
µ
t and

g(n)(t) = anb
n(1 + bx)1/2−n,
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where b = 2µ2/λ and an is defined in (26). Then, using the Faà di Bruno
formula (43), we obtain the result.

We have the following formulas for n = 2, 3 and 4,

fS2
(x) =

µ3xe−b(x)

λ(a(x) + 1)3
+

µ2xe−b(x)

(a(x) + 1)2
, x ≥ 0,

fS3
(x) =

3µ5x2e−b(x)

2λ2(a(x) + 1)5
+

3µ4x2e−b(x)

2λ(a(x) + 1)4
+

µ3x2e−b(x)

2(a(x) + 1)3
, x ≥ 0,

and

fS4
(x) =

15µ7x3e−b(x)

6λ3(a(x) + 1)7
+

15µ6x3e−b(x)

6λ2(a(x) + 1)6
+

6µ5x3e−b(x)

6λ(a(x) + 1)5
+
µ4x3e−b(x)

(a(x) + 1)4
, x ≥ 0.

The moments of Sn can be obtained in this way. If Θ ∼ IG(λ, µ) is an
inverse Gaussian distribution, the positive moments are (see Johnson et al.,
1994),

E(Θr) = µr

r−1
∑

s=0

(r − 1 + s)!

s!(r − 1− s)!

(

2
λ

µ

)−s

, (34)

and the negative moments

E(Θ−r) =
E(Θr+1)

µ2r+1
, r = 1, 2, . . . (35)

Using previous formulas and Equations (11) and (12) the mean and variance
of Sn are

E(Sn) = n

(

1

λ
+

1

µ

)

,

var(Sn) = n

(

1

µ2
+

3

λµ
+

3

λ2

)

+ n2

(

1

λµ
+

2

λ2

)

.

The mean and variance of the marginal claims with cdf (31) are,

E(Xi) =
1

λ
+

1

µ
, i = 1, 2, . . . , n,

and

var(Xi) =
λ2 + 4λµ+ 5µ2

λ2µ2
, i = 1, 2, . . . , n.
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For the multivariate distribution (X1, . . . , Xn) with joint survival function
(32), the linear correlation coefficient between pairs (Xi, Xj) is (using (7)
and Equations (34) and (35)),

ρij = ρ(Xi, Xj) =
µ(λ+ 2µ)

λ2 + 4λµ+ 5µ2
, i 6= j.

The Kendall’s tau coefficient is given in the following Lemma.

Lemma 3 For the multivariate distribution (X1, . . . , Xn) with joint survival
function (32), the Kendall’s tau coefficient for each pair (Xi, Xj) is,

τij(Xi, Xj) = 1− a(2 + a)− 4e2/aΓ(0, 2/a)

2a2
, i 6= j,

where Γ(0, z) is the incomplete gamma function and a = µ
λ
.

Proof: Since φ(0)
φ′(0)

= 0, using (8) and calling a = µ
λ
,

∫ 1

0

φ(t)

φ′(t)
dt = −

∫ 1

0

[(1− a log t)− 1]2 − 1

2a(1− a log t)
dt = −

∫ ∞

0

[(1 + ax)− 1]e−2x

2a(1 + ax)
dx,

and we get the result, after making the change of variable log t = x.

4.6 Computation of risk measures and ruin formulas

Here we discuss briefly the computation of risk measures for the aggregated
distribution. For the model with Pareto claims and Clayton copula depen-
dence, expressions for the VaR, TVar and tail moments have been obtained
by Sarabia et al. (2016). On the other hand, some of the aggregated dis-
tributions obtained in previous sections can be written as finite mixtures of
distributions. Then, to compute the TVaR and the tail moments, we in-
clude in the Appendix a general result for computing these measures in finite
mixtures, in terms of these measures for the components of the mixture.

Explicit ruin formulas for this kind of models with dependence risks have
been provided by Albrecher et al. (2011). They obtained explicit mixture
of ruin functions by using the gamma and Weibull (the pdf given in (23))
as mixing distributions. Unfortunately, we can not get additional mixture
ruin functions for the others mixing distributions considered here. Notwith-
standing, we can obtain a closed expression for the mixture ruin function
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for model (1-2) and assuming that Θ follows a Lindley distribution with pa-
rameter λ > 0. The continuous Lindley distribution (Lindley, 1958), which
depends only on one parameter, has not been frequently used in the statisti-
cal science although its treatment has been demonstrated to be useful. The
pdf of the Lindley distribution with parameter λ > 0 is given by

f(x) =
λ2

1 + λ
(1 + x) exp(−λx), x > 0,

which is a mixture of an exponential distribution with a gamma distribution.
The use of this simple distribution has been demonstrated to be useful in
actuarial statistical in some recent works. See, for example Gómez–Déniz et
al. (2012) and Asgharzadeh et al. (2017).

Now, under the model (1-2) and using Theorem 2, we get the probability
function of Sn, which results in

fSn
(x) =

nλ2

1 + λ

xn−1(x+ λ+ n+ 1)

(x+ λ)n+2
, x > 0. (36)

Using expression (4) in Albrecher et al. (2011) and denoting by ψθ(u) the
ruin probability of the classical compound Poisson (with parameter φ > 0) we
get the mixture of the ruin function when Θ follows the Lindley distribution
with parameter λ > 0. This results

ψ(u) = 1− 1 + λ(1 + θ0)

1 + λ
exp(−θ0λ)

+
λ2φ exp(uφ/c)

c(1 + λ)(u+ λ)
[exp[−θ0(u+ λ)] + (u+ λ)Γ(0, θ0(u+ λ))] .

Here, θ0 = φ/c and c > 0 is a constant premium intensity. Observe that

when u → ∞ ψ(u) = 1 − 1+λ(1+θ0)
1+λ

exp(−θ0λ) = F̄ (θ0), where F̄ (·) is the
survival function of the Lindley distribution.

4.7 Collective risk model

Sarabia et al. (2016) obtained some closed-form expressions for the pdf of
the total claim amount in the collective risk model, SN = X1 +X2 + · · · +
XN , assuming that the secondary distribution is Pareto and several primary
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distributions for N . The pdf of the total claim amount can be computed by
using

gSN
(x) =

∞
∑

n=1

pnfSn
(x), x > 0 (37)

being gSN
(0) = p0.

It is easy to check using (36) and (37) that if N follows a Poisson distri-
bution with parameter φ > 0 and the secondary distribution is the Lindley
with parameter λ > 0, then the total claim amount has pdf given by

gSN
(x) =

λ(λ+ 2) + x[2(λ + 1) + φ+ x]

(λ+ 1)(λ+ x)4
φλ2 exp

[

− λφ

λ+ x

]

, x > 0,

while gSN
(0) = exp(−φ).

On the other hand, if the primary distribution is negative binomial with
parameters r > 0 and 0 < p < 1, then the pdf of the total claim amount
results,

gSN
(x) =

λ(λ+ 2) + x[p(x+ λ− r + 1) + λ+ r + 1]

(λ+ 1)(λ+ px)2+r
(x+ λ)r−2λ2qrpr, (38)

for x > 0, being fSN
(0) = pr and q = 1 − p. Observe that if we assume

in (38) r = 1 we get the pdf of the total claim amount for the compound
geometric-Lindley model.

Finally, if we assume the logarithmic distribution with parameter 0 <
φ < 1 as primary distribution we get

gSN
(x) =

λ2φ[xφ(λ+ x+ 1)− (λ+ x)(λ+ x+ 2)]

(λ+ 1)[(λ+ x)(λ+ x(1 − φ)]2 log(1− φ)
, x > 0,

and gSN
(0) = 0 if x < 0.

Expressions for the mean and variance of these compounds distributions
can be derived easily.

5 More General Dependent Models

In this section we sketch one extension of the basic model. One of the pre-
vious extensions of the basic model (1)-(2) was provided by Albrecher et
al. (2011), using conditional marginals with survival function of the power
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form (Ḡ(xi))
θ, for a particular baseline distribution G(x). The new family

is again Archimedean and includes the model with Pareto claims. However,
the distribution of the aggregated risks does not look simple.

We consider below mixtures of classical gamma distributions. We have
a random vector (X1, . . . , Xn), which are conditionally on Θ independent
gamma distributions with shape parameter αi and location θ. The corre-
sponding stochastic representation is,

Xi|Θ = θ ∼ Ga(αi, θ), i = 1, 2, . . . , n, independent

Θ ∼ FΘ(·),

with α1, . . . αn > 0 and θ > 0. Taking αi = 1 for all i in previous model, we
obtain (1)-(2)

The conditional joint density of (X1, . . . , Xn) given Θ is,

f(x1, . . . , xn|θ) =
n
∏

i=1

xαi−1
i

Γ(αi)
θα̃e−θ

∑n
i=1

xi, xi > 0, i = 1, 2, . . . , n,

where α̃ =
∑n

i=1 αi. The joint density of (X1, . . . , Xn) distribution is,

fX1,...,Xn
(x1, . . . , xn) =

n
∏

i=1

xαi−1
i

Γ(αi)

∫ ∞

0

θα̃e−θ
∑n

i=1
xidFΘ(θ),

where xi > 0, i = 1, 2, . . . , n, with marginal densities,

fXi
(xi) =

xαi−1
i

Γ(αi)

∫ ∞

0

θαie−θxidFΘ(θ), (39)

i = 1, 2, . . . , n. It should be noted that Xi are not equally distributed if
αi 6= αj , i 6= j.

Taking into account that Sn|θ ∼ Ga(α̃, θ) we obtain,

fSn
(x) =

xα̃−1

Γ(α̃)

∫ ∞

0

θα̃e−θxdFΘ(θ), x ≥ 0,

and fSn
(x) = 0 if x < 0.
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5.1 Second kind beta mixtures of gamma distributions

Assume the the mixing distribution is a second kind beta distribution, and
then we consider the multivariate dependent risk model,

(X1, . . . , Xn)
⊤ = (Gα1

Hβ,γ, . . . , Gαn
Hβ,γ)

⊤, (40)

where Gαi
∼ Ga(αi, 1), i = 1, 2, . . . , n are independent gamma random vari-

ables and Hβ,γ =
Gβ

Gγ
∼ B2(β, γ) is a second kind beta distribution indepen-

dent of the gamma random variables. The marginal distribution of (40) was
proposed by Sibuya (1979), using the term “gamma product-ratio distribu-
tions”. The marginal pdf of Xi is given by (using (39)),

fXi
(x) =

Γ(β + γ)

Γ(α)Γ(β)Γ(γ)
xαi−1

∫ ∞

0

e−xθ θαi+γ−1

(1 + θ)β+γ
dθ

=
Γ(αi + γ)Γ(β + γ)

Γ(αi)Γ(β)Γ(γ)
xαi−1U(αi + γ, αi − β + 1, x),

with x ≥ 0, i = 1, 2, . . . , n and U(a, b, z) represents the Kummer function
or confluent hypergeometric function, defined by (Abramowitz and Stegun
(1970), eq. 43.2.5),

U(a, b, z) =

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt, (41)

with a, z > 0. The joint moments of (40) are,

E(Xr1
1 · · ·Xrn

n ) = E(Gr1
1 ) · · ·E(Grn

n )E(Hr1+···+rn
β,γ )

=

n
∏

i=1

Γ(αi + ri)

Γ(αi)

Γ(β + r̄)Γ(γ − r̄)

Γ(β)Γ(γ)
,

if γ > r̃ and r̃ =
∑n

i=1 ri.
The distribution of the aggregated risk is given in the following Theorem.

Theorem 10 Let (X1, . . . , Xn)
⊤ be a multivariate Sibuya distribution de-

fined by the stochastic representation (40). The distribution of the aggregated
risk is,

Sn ∼ GᾱHβ,γ,
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with pdf,

fSn
(x) =

Γ(α̃ + γ)Γ(β + γ)

Γ(α̃)Γ(β)Γ(γ)
xᾱ−1U(α̃ + γ, α̃− β + 1, x), x ≥ 0

and fSn
(x) = 0 if x < 0, being α̃ =

∑n
j=1 αj, and U(a, b, z) is defined in (41).

Proof: the proof is direct taking into account that the distribution of the
sum is,

Sn =

n
∑

j=1

Gαi
Hβ,γ = Hβ,γ

n
∑

j=1

Gαi

d
= Hβ,γGα̃,

where
d
= means equally distributed and α̃ =

∑n
j=1 αj.

The moments of Sn are,

E(Sr
n) =

Γ(α̃ + r)Γ(β + r)Γ(γ − r)

Γ(α̃)Γ(β)Γ(γ)
,

if γ > r.

6 Conclusions and future research

In this paper, we have obtained analytic expressions for the probability den-
sity function and the cumulative distribution function of aggregated risks,
where the risks are modeled according to a mixture of exponential distri-
butions. We have studied some specific models, describing the claims with
Pareto (Sarabia et al, 2016), Gamma, Weibull distributions and inverse Gaus-
sian mixture of exponentials (Whitmore and Lee, 1991). We have also pro-
posed an extension of the basic model based on mixtures of gamma distri-
butions. This research can be extended in several different ways. The first
obvious extension would be to consider other different Archimedean copulas
including the Ali-Mikhail-Haq, Frank and Joe families. A second possibility
would be to work with other general classes of Laplace transforms. One of
these classes is the family proposed by Hougaard (1986), which includes as
a limit case the Laplace transform of the gamma distribution and then the
Pareto claims and the Clayton copula. Other extensions include the model
discussed in Section 5. Eventually, model based on mixtures of Pareto dis-
tributions can also be considered. In the Appendix, we include some brief
comments about the asymptotic behavior of the aggregated risks in this
model. All these points will be addressed in future research.
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Appendix

The partial Bell polynomials 1

The partial or incomplete exponential Bell polynomials are a triangular array
of polynomials defined by,

Bn,k(x1, . . . , xn−k+1) =
∑ n!

j1! · · · jn−k+1!

(x1
1!

)j1
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,

where the sum is taken over all sequences j1, . . . , jn−k+1 of non-negative in-
tegers such that

∑n−k+1
i=1 ji = k and

∑n−k+1
i=1 iji = n.

In Mathematica the partial Bell polynomials are

BellY[n, k, x1, ..., xn−k+1]

Then for n = 2 we have,

B2,1(x1, x2) = x2,

B2,2(x1) = x21,

for n = 3,

B3,1(x1, x2, x3) = x3,

B3,2(x1, x2) = 3x1x2,

B3,3(x1) = x31,
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for n = 4,

B4,1(x1, x2, x3, x4) = x4,

B4,2(x1, x2, x3) = 3x22 + 4x1x3,

B4,3(x1, x2) = 6x21x2,

B4,4(x1) = x41,

for n = 5,

B5,1(x1, x2, x3, x4, x5) = x5,

B5,2(x1, x2, x3, x4) = 10x2x3 + 5x1x4,

B5,3(x1, x2, x3) = 15x1x
2
2 + 10x21x3,

B5,4(x1, x2) = 10x31x2,

B5,5(x1) = x51,

and so on.

The Leibniz and Faà di Bruno formulas

Some of the formulas for the n-th derivative of the Laplace transform can
be written as the n-th derivative of the product and the composition of
functions. The following lemma provides the Leibniz formula.

Lemma 4 If f and g are n-times differentiable functions, the product fg is
also n-times differentiable and its n-th derivative is given by,

dn

dxn
(fg)(x) =

n
∑

k=0

(

n

k

)

f (n−k)(x)g(k)(x). (42)

Other formulas can be written using the Faà di Bruno formula (Krantz
and Parks, 2002), which is an identity that generalized the chain rule to
higher derivatives. We consider the version of the Faà di Bruno formula in
terms of the Partial Bell polynomials

Lemma 5 The nth derivative of the composition of two functions f(g(x))
can be written as,

dn

dxn
f(g(x)) =

n
∑

k=1

f (k)(g(x))Bn,k

(

g′(x), g
′′

(x), . . . , g(n−k+1)(x)
)

, (43)

where Bn,k(x1, . . . , xn−k+1) are the partial Bell polynomials.
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Risk measures: TVaR and tail moments

In this Section we show how to compute TVaR and in general tail moments
for a finite mixture of distributions. First, we provides a Lemma for comput-
ing the tail moments.

Lemma 6 Let X be a positive random variable with cdf FX(·) and E(Xr) <
∞, with r ∈ N. If a > 0 we have,

E(Xr|X > a) = E(Xr)
1− F

(r)
X (a)

1− FX(a)
,

where F
(r)
X (x) =

∫ x

0
trfX(t)dt

E(Xr)
is the cdf of the incomplete rth moment.

Proof: The proof is direct since,

E(Xr|X > a) =

∫∞
a
xrdFX(x)

1− FX(a)
.

This theorem can be used in some previous aggregated distributions.

Theorem 11 Let X be a positive random variable which is a finite mixture
of positive random variables, that is, the cdf of X, FX(·) can be written as,

FX(x) = π1FX1
(x) + · · ·+ πnFXn

(x), x ≥ 0,

where FXi
(x) are the cdf of the random variables Xi, i = 1, 2, . . . , n and

∑n
i=1 πi = 1. Then, if E(Xr) < ∞, the rth upper tail moment of X can be

written as,

E(Xr|X > a) =
n
∑

k=1

πk{1− FXk
(a)}

1− FX(a)
E(Xr

k |Xk > a),

with a ≥ 0.

Proof: The proof is also direct taking into account,

∫ ∞

0

xrdFX(x) =
n
∑

k=1

πk

∫ ∞

0

xrdFXk
(x),

together with Lemma 6.
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Asymptotic probabilities for mixtures of Pareto distri-

bution

Undoubtedly, the single parameter Pareto distribution is commonly used as
a basis for excess of loss quotations as it gives a pretty good description
of the random behaviour of large losses. Moreover, approximating the tail
probability of Sn when the losses have Pareto and other distributions is a
recurrent problem encountered in the actuarial literature (see, for instance
Goovaerts et al. (2005)).

Rohener and Winniwarter (1985) (see also Arnold (1983)) obtained the
limiting distribution of an infinite sum of non i.i.d. classical Pareto variables
and linked their results with the theory of stable distributions. Consider the
classical Pareto distribution (Arnold (1983) and Rohener and Winniwarter
(1985)) with shape parameter θi > 0 and precision parameter β > 0 and
assume that X1, . . . , Xn are independent but non–identical random variables
following a classical Pareto distribution. Rohener and Winniwarter (1985)
have proven that as x→ ∞,

fSn|Θ(x|θ) ∼
θβmθ

xθ+1
,

where θ = min{θ1, . . . , θn} and m denotes the index of the smallest θi. Let Θ
be a positive random variable with cdf FΘ(·) and Laplace transform LΘ(·).
Thus, the asymptotic behaviour of the unconditional distribution of Sn re-
sults

fSn
(x) ∼ − d

dx
LΘ

[

log

(

x

βm

)]

, (44)

as it is straightforward to check.
Using (44), it is easy to get the asymptotic behaviour of the mixture

of fSn|Θ(x|θ) with the gamma, Θ ∼ Ga(α, λ), and inverse Gaussian, Θ ∼
IG(λ, µ), acting as mixing distributions, which is expressed as

fSn
(x) ∼ αλα

x [λ+ log x−m log β]α+1 ,

fSn
(x) ∼ 1

x

√

λ

ϕλ,µ,β,m(x)
exp

[

λ

µ
−
√

λϕλ,µ,β,m(x)

]

,

respectively, where ϕλ,µ,β,m(x) =
λ
µ2 + 2 log

(

x
βm

)

.
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