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Abstract

We consider a set of variables with a deterministic trend and a stochastic trend.

The deterministic trend is allowed to have changes in the intercept and slope. We

develop three tests, a cointegration test, a joint test for cointegration and cobreak-

ing, and a joint test for cointegration and cotrending. Our analysis in this paper is

complementary to Carrion-i-Silvestre and Kim (2017), which deals with determin-

istic trends with intecept shifts only.
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1 Introduction

The econometrics literature on unit root and cointegration tests is extremely mature.

However, it is relatively recently that variables with both a stochastic and a determinis-

tic trend with breaks draw attention. For the examples of unit root tests, see Carrion-i-

Silvestre, Kim, and Perron (2009); Harris, Harvey, Leybourne, and Taylor (2009); Har-

vey, Leybourne, and Taylor (2012, 2013); and Kim and Perron (2009). Choi (2015) also

provides a more extensive review of the unit root literature. For the examples of cointe-

gration tests in the presence of breaks or structural break tests in cointegration models,

see Johansen, Mosconi, and Nielsen (2000); Saikkonen and Lütkepohl (2000); Lütkepohl,

Saikkonen, and Trenkler (2004); Trenkler, Saikkonen, and Lütkepohl (2007); Harris, Ley-

bourne, and Taylor (2016); Carrion-i-Silvestre and Sansó (2006); Arai and Kurozumi

(2007); Qu (2007); Kejriwal and Perron (2010); and Carrion-i-Silvestre and Kim (2017).

This paper is closely related to Carrion-i-Silvestre and Kim (2017). The main idea

therein is to view the breaks in the cointegration equation as resulting from the breaks in

each variable. This is di¤erent from a more traditional view that breaks are exogenously

given to cointegration equations and the variables themselves do not have breaks. This

kind of di¤erence in modelling the origin of breaks in the cointegration equation might

matter less at least asymptotically if breaks are limited to intercepts. However, when

slopes are changing, the origin of breaks can even a¤ect the limiting distributions of test

statistics.

The analysis in this paper takes the same view as Carrion-i-Silvestre and Kim (2017).

However, this paper deals with a model with both intercept shifts and slope changes

while Carrion-i-Silvestre and Kim (2017) deals with models with intercept shifts only.

The existence of a slope change indeed makes it possible to consistently estimate break

dates even in the presence of a stochastic trend, which in turn leads to a testing strategy

di¤erent from Carrion-i-Silvestre and Kim (2017).

We develop three statistics, namely a robust cointegration test, a joint test for coin-

tegration and cobreaking, and a joint test for cointegration and cotrending. We devise

our test statistics as (quasi) log-likelihood ratio tests and derive their limiting distribu-

tions. The adequateness of our asymptotics in �nite samples is shown via Monte Carlo

simulation experiments.

This paper is organized as follows. Section 2 introduces the models and tests and

provides the asymptotic results. Section 3 o¤ers Monte Carlo experiment results. Section

4 concludes. The appendix collects some technical derivations.
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2 Model and Tests

The observed variables yt and xt are assumed to be generated by 
yt

xt

!
=

 
�y0

�x0

!
dt +

 
y0t
x0t

!
, (1)

where yt is a scalar random variable, xt is a px � 1 random vector, dt is a pd � 1 vector
of deterministic functions in time, �y and �x are coe¢ cient matrices, and y0t and x

0
t are

stochastic components. The deterministic component dt is speci�ed as

d0t = [DUt(T0); : : : ; DUt(Tm); Bt(T0); : : : ; Bt(Tm)],

where DUt(Tj) = 1 for t > Tj and 0 elsewhere, Bt(Tj) = (t � Tj)DUt(Tj) and T0 = 0.

DUt(Tj) stands for a shift in the intercept and Bt(Tj) stands for a change in the slope of

the linear trend. Models with intercept changes only are analyzed in Carrion-i-Silvestre

and Kim (2017). In fact, our strategy to devise test statistics and to derive their limiting

distributions extremely resembles theirs.

It is assumed that y0t and x
0
t are integrated of order one, which means that both yt and

xt have a stochastic trend in addition to the deterministic trend represented by dt. We are

interested in linear combinations of (yt; x0t) that cancel out the stochastic trends and/or

deterministic trends existing in yt and xt. Let (1;��0) be such a linear combination. The
equation in (1) can be written as

yt = �0xt + �0dt + vt, for t = 1; : : : ; T , (2)

where � = �y � �x� and vt = y0t � �0x0t .

For �, we introduce more parameters

�0 = (�0; : : : ; �m;  0; : : : ;  m);

where �j is the intercept change at Tj and  j is the slope change. a
y and �x are similarly

de�ned by (�yj ;  
y
j ) and (�

x
j ;  

x
j ), respectively. � denotes the �rst di¤erence operator.

Assume that

�vt = "t � �"t�1, with v0 = "0 = 0.

Following Carrion-i-Silvestre and Kim (2017), we will use the following de�nitions through-

out the paper:

1. (yt; x0t) is cointegrated (CI) if and only if � = 1.

2. (yt; x0t) is cobreaking (CB) if and only if �1 = � � � = �m =  1 = � � � =  m = 0.
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3. (yt; x0t) is cotrending (CT) if and only if it is CB and  0 = 0.

2.1 Known Break Dates

We �rst consider testing for the null hypothesis of CI (� = 1) against the alternative of

no CI (� = �� < 1). We devise our test statistic from the following simple case. Let

uxt = �x
0
t ,

and assume

("t; u
x0
t )

0 � IIN

 
0;

 
�2" 0

0 �xx

!!
. (3)

The normality assumption will be relaxed when the limiting distribution is derived for our

test. On the other hand, we deal with only the case in which uxt and "t are independent.

See Carrion-i-Silvestre and Kim (2017) for the case of endogenous regressors.

The model is expressed in matrix notation as

y = D�+X� +	
1=2
� ", (4)

where y = (y1; : : : ; yT )0, D = (d1; : : : ; dT )
0, X = (x1; : : : ; xT )

0, " = ("1; : : : ; "T )0, and

	
1=2
� =

0BBBB@
1 0

1� � 1
...

. . . . . .

1� � � � � 1� � 1

1CCCCA .

Since � and � are irrelevant for CI, they can be concentrated out from the likelihood

function. Also, we set �2" = 1 for simplicity on the exposition, although the �nal test

statistic will be adjusted by a long-run variance estimate. The concentrated log likelihood

function is given by

LT (�; �) = const:� 1
2
y0	

�1=2
� M�	

�1=2
� y, (5)

where � = (�1; : : : ; �m) is a vector of break fractions where each �i satis�es Ti = [�iT ],

�1 < � � � < �m, and

M� = IT � Z
��(Z

��0Z
��)�1Z

��0 with Z
�� = [	

�1=2
� D;	

�1=2
� X].

When we extend our analysis to the case of unknown break dates, the true break dates

and generic break dates must be di¤erentiated. Thus, we will use �0 and � for the true

dates and generic ones.

3



Our test statistic for CI is the likelihood ratio given by

Qr � �2
�
LT (1; �

0)� LT (��; �
0)
�
. (6)

As explained in detail by Carrion-i-Silvestre and Kim (2017), this test is invariant to the

CB and CT. In other words, this test provides a way to test for CI irrespective of CB

and CT.

Now, we make the following assumptions to derive the asymptotic distribution of our

test statistics.

Assumption 1 T 0i = [�
0
iT ], and �

0
i ��0j � a > 0 for all 0 � j < i � m+1 where �00 = 0

and �0m+1 = 1.

Assumption 2 "t =
P1

i=0 ci�t�i with
P1

i=0 i kcik < C and �t � i:i:d:(0; 1), uxt =
P1

i=0Gi�
x
t�i

with
P1

i=0 i kGik < C, G1 =
P1

i=0Gi is of full column rank, and �
x
t � i:i:d:(0; Ipx), and

�t and �
x
t are independent.

Assumption 3  x is of full column rank so that ( x0 x)�1 exists.

These assumptions are identical to those in Carrion-i-Silvestre and Kim (2017). The

next theorem states the asymptotic distribution of the Qr statistic.

Theorem 1 Let � = 1��=T , �� = 1� ��=T and !" =
P1

i=0 ci. Then, under Assumptions

1 � 2, we have

1

!2"
Qr ) 'r(�;

��; �0)

= �1(�; ��)� �2(�; 0; �0;m+ 1;m+ 1; px) + �2(�; ��; �0;m+ 1;m+ 1; px),

where

�1(�; ��) = 2��

Z 1

0

V �
�� (s) dV

� (s)� ��2
Z 1

0

V �
�� (s)

2 ds,

�2(�; ��; �; p; q; n) =

�Z 1

0

Q��� (s) dV
�
�� (s)

�0�Z 1

0

Q��� (s)Q
�0
�� (s) ds

��1�Z 1

0

Q��� (s) dV
�
�� (s)

�
,

V �
�� (s) = V �(s)� ��

Z s

0

e�
��(s�r)V �(r)dr,

V �(s) = V (s) + �

Z s

0

V (r)dr,

Q���(s) = Q�(sjp; q; n)� ��
Z s

0

e�
��(s�r)Q�(rjp; q; n)dr,

Q�(sjp; q; n) = (du(s; �0); : : : ; du(s; �p�1); b(s; �0); : : : ; b(s; �q�1);Wn(s)
0)0,

du(r; �j) = 1(r > �j),

b(r; �j) = (r � �j)1(r > �j),
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V (r) and W (r) are independent standard Wiener processes of dimensions 1 and px re-

spectively, and Wn(r) collects the �rst n elements of W (r).

Note that 'r(�; ��; �
0) stands for the null distribution when � = 0 and stands for the

alternative distribution when � > 0. In practice, the value of �� has to be decided by the

researcher. Following the custom in the econometrics literature, we recommend to set the

value of �� so that the local asymptotic power curve is tangent to the theoretical power

envelop with 50% power. Table 1 reports1 the suggested values for ��(= 1� ��=T ). With
this choice of ��, selected percentiles of '(�; ��; �0) are reported in Table 2.2

Now, we develop joint tests for CI and CB and for CI and CT. Now that � is of

interest, we work with the unconcentrated log likelihood LT (�; �j�; �0). Let Qcb be the
test statistic for the joint null of CI and CB and Qct be the joint null of CI and CT. Then,
we propose

Qcb = �2

0B@ max
�;�
s:t:

Rcb�=0

LT (�; �j1; �0)�max
�;�

LT (�; �j��; �0)

1CA ,

Qct = �2

0B@ max
�;�
s:t:

Rct�=0

LT (�; �j1; �0)�max
�;�

LT (�; �j��; �0)

1CA ,
where

Rcb� = (�1 : : : ; �m;  1; : : :  m)
0,

Rct� = (�1 : : : ; �m;  0;  1; : : :  m)
0.

The asymptotic null distributions for the Qcb and Qct statistics are reported in the fol-
lowing theorem.

Theorem 2 Let � = 1, �� = 1 � ��=T and !" =
P1

i=0 ci. Suppose Assumptions 1 � 3

hold. Let �1(�; ��) and �2(�; ��; �; p; q; n) be the same as in Theorem 1.

(i) If CB holds and px � m, we have

1

!2"
Qcb ) 'cb(0; ��; �

0)

� �1(0; ��)� �2(0; 0; �0; 1;m+ 1; px �m) + �2(0; ��; �
0;m+ 1;m+ 1; px).

1In Tables 1 and 2, we report the results for the case of px = 1 and 2. The extended tables for
px = 3; : : : ; 5 are available upon request from the authors.

2To generate these critical values, a Wiener process is approximated with 2,000 steps and the number
of simulation repetitions is roughly 20,000.

5



(ii) If CT holds and px � m+ 1, we have

1

!2"
Qct ) 'ct(0;

��; �0)

� �1(0; ��)� �2(0; 0; �0; 1;m+ 1; px �m� 1) + �2(0; ��; �0;m+ 1;m+ 1; px).

It is worth mentioning that when there are more breaks than stochastic regressors

(px � m for CB and px � m + 1 for CT), the limiting distributions depend on nuisance

parameters, and thus cannot be tabulated. Relevant percentiles of 'cb(0; ��; �
0) can be

found in Tables 3 and 4.

2.2 Unknown Break Dates

Now we consider using estimated break dates instead of the true ones. When the slopes

are changing, the break dates can be estimated regardless of CI. More speci�cally, the

break dates can be estimated by minimizing the sum of squared residuals from a regression

of qt = (�yt;�x0t)
0 on �dt where dt is de�ned with a generic �. Let q = [q2; : : : ; qT ]0 and

�D� = [�d2; : : : ;�dT ]
0. Then the break date estimator is de�ned to be

e� = (e�1; : : : ; e�m)
= argmin

�
tr
�
q0(I ��D�(�D

0
��D�)

�1�D0
�)q
�
.

The Qr, Qcb and Qct tests can be constructed at the estimated break dates, e�. Under
Assumption 3, e� is known to be consistent at rate T .
Now, our test statistics are given by

eQr = �2
�
max
�;�

LT (�; �j1; e�)�max
�;�

LT (�; �j��; e�)�

eQcb = �2

0B@ max
�;�
s:t:

Rcb�=0

LT (�; �j1; �)�max
�;�

LT (�; �j��; e�)
1CA

eQct = �2

0B@ max
�;�
s:t:

Rct�=0

LT (�; �j1; �)�max
�;�

LT (�; �j��; e�)
1CA .

The next theorem states that these test statistics have the asymptotic distributions that

have been derived for the known break date case.

Theorem 3 Let � = 1, �� = 1 � ��=T and !" =
P1

i=0 ci. Suppose that Assumptions 1 �
3 hold and jje� � �0jj = Op(T

�1).

(i)
1

!2"
eQr ) '(0; ��; �0),
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where '(0; ��; �0) is as de�ned in Theorem 1.

(ii) If CB holds and px � m,

1

!2"
eQcb ) 'cb(0;

��; �0),

where 'cb(0; ��; �
0) is as de�ned in Theorem 2.

(iii) If CT holds and px � m+ 1,

1

!2"
eQct ) 'ct(0; ��; �

0),

where 'ct(0; ��; �
0) is as de�ned in Theorem 2.

3 Simulation

The data generation process (DGP) is identical to (1). Much of the simulation design

resembles the one employed in Carrion-i-Silvestre and Kim (2017) to make the comparison

easier. We let �x be a matrix of 2, and � be a px� 1 vector of 1=pxs. �y is determined in
such a way that � can have a desired value from the relationship � = �y � �x�. �0 = 0

in all cases as this does not a¤ect the results. x0t is an accumulation of independent

standard normal errors. y0t is a sum of �0x0t and vt =
Pt

j=1("j � �"j�1) with "t being an

independent standard normal variate and v0 = "0 = 0.

The following 6 DGPs are simulated with px = 2. The number of simulation repeti-

tions is 1,000 in all cases.

DGP 1 (CI + CT) � = 1, �i =  j = 0,  0 = 0.

DGP 2 (CI + CB) � = 1, �i =  j = 0,  0 = 0:3.

DGP 3 (CI + No CB) � = 1, �i = 10 j = 0:5 � 2:5 in steps of 0:5 and 3 � 12 in steps
of 3,  0 = 0:3.

DGP 4 (No CI + CT) � = 0, 0:25, 0:5 and 1:05 � 1:25 in steps of 0:05, �i =  j = 0,

 0 = 0.

DGP 5 (No CI + CB) � = 0, 0:25, 0:5 and 1:05 � 1:25 in steps of 0:05, �i =  j = 0,

 0 = 0:3.

DGP 6 (No CI + No CB) � = 1:05 � 1:25 in steps of 0:05 with �i = 10 j = 10(� � 1),
and � = 0 with �i = 10 j = 3 � 12 in steps of 3,  0 = 0:3.

For all tests, the long-run variance is estimated by a heteroskedasticity and autocor-

relation consistent covariance estimator with the quadratic spectral kernel, for which the
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bandwidth parameter is selected using Andrews�s (1991) data dependent method with an

AR(1) approximation.

Finite Sample Size Table 5 reports the �nite sample sizes for nominal 5% signi�cance.

In the simulation, the break dates are estimated by minimizing the sum of squared residu-

als from a regression of �rst di¤erences of (yt; x0t) on intercept shifts and impulse dummies.

Overall, the actual sizes are quite close to the nominal level, which suggests that the

asymptotic critical values o¤er a good approximation.

Power Comparison Table 6 reports size adjusted powers. We focus on the tests using

estimated break dates. For comparison, also simulated are the Gregory and Hansen

(1996) test (GH), the Shin (1994) test, and the Kejriwal and Perron (2010) test (KP).

The �nite sample critical values are obtained under DGP1 for all tests but the GH

test. The critical value for the GH test is obtained under DGP4 because this test takes

the null of no CI. As a result, the rejection probabilities are 5% exactly for all tests but

the GH test. The GH test rejects the null with 100%, which is exactly as it is intended.

With DGP 2, CI and CB still hold but CT does not. Hence, the eQct(1) test correctly
detects the breakdown of CT, while all other tests show the same rejection probabilities

as in DGP1.

With DGP 3, both eQcb(1) and eQct(1) reject the joint null with large probabilities since
CB does not hold. eQct(1) appears more powerful than eQcb(1). On the other hand, eQr(1)
still remains at 5% because CI still holds. This di¤erence in rejection probabilities shows

that our tests are working exactly in the way they are designed. Note that our tests

are more powerful than the Shin test and the KP test. Also noteworthy is the fact that

the power of the Shin test is decreasing as �1 gets larger, which is the well-documented

non-monotonic power problem.

With DGP 4, not only the eQcb(1) and eQct(1) tests but also the eQr(1) test rejects with
large probabilities because CI does not hold. Again note that our tests are performing

better than the Shin test and the KP test. The GH test is supposed to control the size,

but it apparently fails.

With DGP 5, the rejection rates for eQct(1) become very close to one due to the break
down of CT. With DGP 6, the results are similar to the ones for DGP 5.

4 Conclusion

We consider a system of trending variables and develop three statistics, a CI test, a

joint test for CI and CB, and a joint test for CI and CT. Our analysis in this paper is

complementary to Carrion-i-Silvestre and Kim (2017), with the notable di¤erence that

we allow for slope changes. When slopes are changing, the break dates are estimated
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consistently regardless of CI. This feature enables us to implement a test procedure that

is di¤erent from Carrion-i-Silvestre and Kim (2017).
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<Appendix>

Proof of Theorem 1: We only need to �nd � so that �Z[Tr] converges properly. Let

� =

 
�1 0

�T�1=2G�1=21 �x0 T�1=2G
�1=2
1

!
,

where �1 = diagfIm+1; T�1Im+1g. It follows that

�Z[Tr] =

0BBBB@
DU[Tr](T0)

...
DU[Tr](Tm)

T�1=2G
�1=2
1 x[Tr] � T�1=2G

�1=2
1 �x0d[Tr]

1CCCCA =

0BBBB@
DU[Tr](T0)

...
DU[Tr](Tm)

T�1=2G
�1=2
1 x0[Tr]

1CCCCA) Q�(r).

Then, the rest of the proof is the same as the proof of Theorem 1 in Carrion-i-Silvestre
and Kim (2017). �

Proof of Theorem 2: See the proof for Theorem 2 in Carrion-i-Silvestre and Kim
(2017). �

Proof of Theorem 3: The result follows from a similar argument to the proof of
Theorem 4(i) in Carrion-i-Silvestre and Kim (2017). Because we have the Bt(Tj) terms
in addition to the DUt(Tj) terms, let eD = [ed1; : : : ; edT ]0. edt is the same as dt except that
DUt(T

0
j ) is replaced byDUt(eTj) andBt(T 0j ) byBt(eTj)+(eTj�T 0j )DUt(Tj) for j = 1; : : : ;m,

where (eT1; : : : ; eTm) = Te� = T (e�1; : : : ; e�m).
Then, the columns of D � eD are DU(T 0j ) � DU(eTj) and Bt(T 0j ) � B(eTj) � (eTj �

T 0j )DU(eTj) for j = 0; : : : ;m, and each of these columns has non-zero elements only

between min(T 0j ; eTj) + 1 and max(T 0j ; eTj), which are bounded. The rest of the proof
is analogous to the proof of Theorem 4(i) in Carrion-i-Silvestre and Kim (2017) with
the simpli�cation that the same break date estimates are used for both the null and
alternative regressions. �
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Table 1. Suggested Values of ��, Local to Unity Parameter

m 0 1 2 3

px = 1 13:4 18:0 22:6 27:7

px = 2 14:9 19:4 23:7 28:9
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Table 2. Upper Percentiles for 'r(0; ��; �0)

(i) One Break, m = 1

px = 1

�0 10% 5% 1%

0:2 �9:08 �7:92 �5:35
0:3 �9:40 �8:36 �6:11
0:4 �9:49 �8:49 �6:30
0:5 �9:52 �8:48 �6:38
0:6 �9:52 �8:49 �6:12
0:7 �9:38 �8:31 �6:03
0:8 �9:11 �7:91 �5:56

px = 2

�0 10% 5% 1%

0:2 �10:24 �9:11 �6:78
0:3 �10:38 �9:31 �6:76
0:4 �10:48 �9:46 �7:14
0:5 �10:51 �9:45 �7:30
0:6 �10:46 �9:46 �6:99
0:7 �10:43 �9:29 �6:95
0:8 �10:16 �9:03 �6:67

(ii) Two Breaks, m = 2

px = 1

�0 10% 5% 1%

(0:2; 0:4) �12:54 �11:49 �9:01
(0:2; 0:5) �12:81 �11:73 �9:44
(0:2; 0:6) �12:87 �11:78 �9:55
(0:2; 0:7) �12:77 �11:67 �9:26
(0:2; 0:8) �12:59 �11:42 �8:94
(0:3; 0:5) �12:75 �11:66 �9:28
(0:3; 0:6) �12:96 �11:98 �9:79
(0:3; 0:7) �13:00 �12:01 �9:87
(0:3; 0:8) �12:83 �11:72 �9:29
(0:4; 0:6) �12:81 �11:71 �9:46
(0:4; 0:7) �13:00 �12:03 �9:88
(0:4; 0:8) �12:89 �11:79 �9:45
(0:5; 0:7) �12:79 �11:70 �9:46
(0:5; 0:8) �12:74 �11:66 �9:26
(0:6; 0:8) �12:58 �11:44 �9:03

px = 2

�0 10% 5% 1%

(0:2; 0:4) �13:54 �12:49 �10:05
(0:2; 0:5) �13:68 �12:61 �10:23
(0:2; 0:6) �13:65 �12:63 �10:24
(0:2; 0:7) �13:69 �12:62 �10:18
(0:2; 0:8) �13:43 �12:36 �10:03
(0:3; 0:5) �13:66 �12:55 �10:30
(0:3; 0:6) �13:77 �12:77 �10:48
(0:3; 0:7) �13:80 �12:72 �10:57
(0:3; 0:8) �13:63 �12:52 �10:24
(0:4; 0:6) �13:71 �12:69 �10:48
(0:4; 0:7) �13:77 �12:80 �10:64
(0:4; 0:8) �13:62 �12:58 �10:37
(0:5; 0:7) �13:68 �12:59 �10:22
(0:5; 0:8) �13:62 �12:56 �10:30
(0:6; 0:8) �13:50 �12:39 �10:02

(iii) Three Breaks, m = 3

px = 1

�0 10% 5% 1%

(0:2; 0:4; 0:6) �16:43 �15:33 �12:95
(0:2; 0:4; 0:7) �16:54 �15:47 �13:22
(0:2; 0:4; 0:8) �16:44 �15:35 �13:16
(0:2; 0:5; 0:7) �16:51 �15:44 �13:10
(0:2; 0:5; 0:8) �16:47 �15:40 �13:07
(0:2; 0:6; 0:8) �16:39 �15:28 �12:95
(0:3; 0:5; 0:7) �16:57 �15:55 �13:34
(0:3; 0:5; 0:8) �16:55 �15:48 �13:26
(0:3; 0:6; 0:8) �16:59 �15:53 �13:19
(0:4; 0:6; 0:8) �16:43 �15:34 �12:89

px = 2

�0 10% 5% 1%

(0:2; 0:4; 0:6) �17:37 �16:27 �13:92
(0:2; 0:4; 0:7) �17:41 �16:33 �14:20
(0:2; 0:4; 0:8) �17:28 �16:23 �13:63
(0:2; 0:5; 0:7) �17:37 �16:30 �14:01
(0:2; 0:5; 0:8) �17:38 �16:33 �13:98
(0:2; 0:6; 0:8) �17:29 �16:17 �13:83
(0:3; 0:5; 0:7) �17:37 �16:25 �14:07
(0:3; 0:5; 0:8) �17:40 �16:31 �13:95
(0:3; 0:6; 0:8) �17:40 �16:36 �14:00
(0:4; 0:6; 0:8) �17:31 �16:22 �13:81

12



Table 3. Upper Percentiles for 'cb(0; ��; �0)

px = 1

�0 10% 5% 1%

0:2 �6:04 �4:47 �0:85
0:3 �6:36 �4:83 �1:52
0:4 �6:34 �4:85 �1:39
0:5 �6:34 �4:85 �1:30
0:6 �6:46 �4:95 �1:45
0:7 �6:31 �4:72 �1:39
0:8 �6:14 �4:50 �1:03

px = 2

�0 10% 5% 1%

0:2 �7:06 �5:44 �1:83
0:3 �7:22 �5:67 �2:40
0:4 �7:40 �5:85 �2:38
0:5 �7:39 �5:89 �2:38
0:6 �7:43 �6:02 �2:67
0:7 �7:31 �5:89 �2:29
0:8 �7:13 �5:50 1:89

Table 4. Upper Percentiles for 'ct(0; ��; �0)

px = 2

�0 10% 5% 1%

0:2 �5:66 �3:94 �0:24
0:3 �5:90 �4:25 �0:44
0:4 �5:83 �4:17 �0:47
0:5 �5:88 �4:11 �0:35
0:6 �5:94 �4:29 �0:55
0:7 �5:84 �4:14 �0:47
0:8 �5:77 �3:95 �0:39

Table 5. Finite Sample Sizes, DGP 1 (CI+CT)

�0 T eQr(m) eQcb(m) eQct(m) Qr(m) Qcb(m) Qct(m)
(0:5) 120 :049 :058 :065 :048 :059 :067

360 :055 :058 :049 :056 :048 :050

(0:3, 0:7) 120 :043 :061 � :043 :053 �
360 :057 :055 � :058 :055 �

(0:2, 0:5, 0:8) 120 :035 � � :032 � �
360 :042 � � :044 � �
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Table 6. Power Comparison, Null Rejection Probabilities

� �1  1
eQr(1) eQcb(1) eQct(1) Shin KP GH

DGP 1 1:0 0:0 0:0 :05 :05 :05 :05 :05 1:0

DGP 2 1:0 0:0 0:3 :05 :05 1:0 :05 :05 1:0

DGP 3 1:0 0:5 0:3 :05 :13 1:0 :12 :10 1:0

1:0 :05 :40 1:0 :35 :26 1:0

1:5 :05 :73 1:0 :57 :55 1:0

2:0 :05 :92 1:0 :73 :81 1:0

2:5 :05 :99 1:0 :83 :94 1:0

3:0 :05 1:0 1:0 :88 :99 1:0

6:0 :05 1:0 1:0 :85 1:0 1:0

9:0 :05 1:0 1:0 :64 1:0 1:0

12:0 :05 1:0 1:0 :41 1:0 1:0

DGP 4 0:0 0:0 0:0 1:0 1:0 1:0 :42 :78 :05

0:25 1:0 1:0 1:0 :21 :72 :48

0:50 1:0 1:0 1:0 :40 :78 :99

1:05 :08 :09 :13 :09 :07 1:0

1:10 :17 :20 :39 :19 :16 1:0

1:15 :32 :38 :66 :35 :29 1:0

1:20 :48 :56 :80 :48 :43 1:0

1:25 :63 :71 :88 :56 :56 1:0

DGP 5 0:0 0:0 0:3 1:0 1:0 1:0 :42 :78 :05

0:25 1:0 1:0 1:0 :21 :72 :48

0:50 1:0 1:0 1:0 :40 :78 :99

1:05 :08 :09 1:0 :09 :07 1:0

1:10 :17 :20 1:0 :19 :16 1:0

1:15 :32 :38 1:0 :35 :29 1:0

1:20 :48 :56 1:0 :48 :43 1:0

1:25 :63 :71 1:0 :56 :56 1:0

DGP 6 1:05 0:5 0:3 :08 :17 1:0 :16 :12 1:0

1:10 1:0 :17 :50 1:0 :41 :36 1:0

1:15 1:5 :32 :77 1:0 :58 :59 1:0

1:20 2:0 :49 :92 1:0 :68 :72 1:0

1:25 2:5 :63 :97 1:0 :72 :81 1:0

0:0 3:0 1:0 1:0 1:0 :44 :78 :04

6:0 1:0 1:0 1:0 :43 :81 :12

9:0 1:0 1:0 1:0 :45 :86 :32

12:0 1:0 1:0 1:0 :48 :92 :59

15:0 1:0 1:0 1:0 :50 :97 :80

14


